PHP: 100 PYQS WITH
ANSWERS (FULL)

Each slide = 1T Question + Answer/Code
Q1 -Q100

Q1. DIFFERENCE BETWEEN
ECHO AND PRINTe

« echo: faster, multiple args.
print: returns 1, single arg.

Q2. WHAT
VAR_DUMP()

* Prints type + value details of variables.

Q3. HOW TO DEFINE/USE
CONSTANTS?e

« define('PI',.3.14);
const Pl = 3.14;

Q4. == VS ===¢

« == value only; === value + type (strict).

Q5. FUNCTION WITH
DEFAULT ARG + RETURN
TYPE<?

« function add(int $a,int $=0): int { return $a+3$b; }

Q6. LIST PHP SCALAR +
SPECIAL TYPES.

* Int, float, string, bool, array, object, resource, null.

Q7. START SESS
STORE

« session_start(); $_SESSION['user']='All’;

Q8. COOKIES VS
SESSIONS?

« Cookie: client-side; Session: server-side.

QY. FOREACH EXAMPLE.

« foreach($arr as $k=>3%v){ echo "$k:$v\n"; }

Q10. MYSQLI CONNECT
(PROCEDURAL).

« $c=mysqli_connect(localhost','root",", 'test');

Q1 1. INDEXED VS
ASSOCIATIVE ARRAYS?

« Indexed: numeric keys; Associative: string keys.

Q12. ARRAY_MERGE
USAGE.

° $C=erqy_merge ($Q,$b);

Q13. COUNT AR
ELEME

« count($arr);

Q14. MULTIDIMENSIONAL
ARRAY EXAMPLE.

* $a=[[1.2].[3.4]];

Q15. ITERATE WITH
KEY/VALUE.

 foreach($a as $k=>%v){ /*...*/ }

Q16. COMMON STRING
FUNCS.

* strlen, strtolower, strtoupper, strpos, substr.

Q17. SUBSTR EXAMPLE.

* substr(‘abcdef',1,3) // 'bcd'

Q18. EXPLODE VS
MPLODE.

« explode: string—array; implode: array—string.

Q19. TRIM USAGE.

« trim(" hi') // 'hi’

Q20. ST
INTERPOLA

« $name="'Ali"; echo "Hello $name";

Q21. $_GET VS $_POAJT.

« GET in URL; POST in body; POST safer for forms.

Q22. $_REQUEST
MEANING.

* Union of GET+POST+COOKIE (avoid in strict apps).

Q23. BASIC FILE UPLOAD.

« move_uploaded_file($_FILES['f']['tmp_name'],'uploads/a
Axt');

Q24. FILE READ/WRITE
QUICK.

« file_put_contents('a.txt’,'hi’); echo
file_get_contents('a.txt');

Q25. INCLUDE V3
REQUIRE.

* include: warning on miss; require: fatal on miss.

Q26. READ FILE LINE BY
_INE.

« while(($l=fgets($fp))!==false){ echo $I; }

QZ2/. APPEND TO FILE.

« file_put_contents('log.txt','New\n',FILE_APPEND);

Q28. OUTPUT BUFFERING.

« ob_start(); echo 'Hi'; $s=ob_get_clean();

Q29. SAFE UPLOAD
STEPS.

« Check error, size, MIME, ext; use move_uploaded_file.

Q30. FILE_EXISTS USAGE.

« if(file_exists('config.php')) require 'config.php’;

Q31. JSON ENCO

« echo json_encode(['a'=>1]);

Q32. JSON

« $arr=json_decode($json,true);

Q33. REDIRECT HEA

« header('Location: login.php'); exit;

Q34. GET VS POST
ADVANTAGES.

« GET: bookmarkable; POST: larger+safer for sensitive
data.

Q35. MYSQLI SELECT +
FETCH.

« $r=mysqgli_query($c,'SELECT * FROM t');
while ($row=mysqgli_fetch_assoc($r)){}

Q36. MYSQLI VS PDO?

« MySQLi: MySQL-only; PDO: multi-DB, nicer prepared
statements.

Q37. PDO CONNECT +
ERRMODE.

« $pdo=new
PDO('mysgl:host=localhost;dbname=x','v’,'p',[PDO::ATIR
_ERRMODE=>PDQO::ERRMODE_EXCEPTION]);

Q38. PDO PREPARED
SELECT.

e $st=%$pdo->prepare('SELECT * FROM u WHERE email=¢');
$st->execute([$e]);

Q39. PDO UPDATE
PREPARED.

« $st=$pdo->prepare('UPDATE u SET n=2¢ WHERE id=¢');

$st->execute([$n,$id]);

Q40. TRY/CAT
EXAM

e try{ /*...*/ Ycatch(Exception $e){ echo $e-

>getMessage(); }

QA41. ISSET VS EMPTY.

o issetf: set & not null; empty: false for ",0,null,[], not set.

Q42. REQUI
INC

RE_ONCE VS

U

DE_ONCE.

« Both avoid duplicate load; require_once fatal on
failure.

Q43. DESTROY SESSION
(LOGOUT).

 session_start(); session_unset(); session_destroy();

Q44. PASSWORD_HASH
USAGE.

« $h=password_hash($pwd,PASSWORD_DEFAULT);

Q45. PASSWORD_VERIFY
USAGE.

« if(password_verify($pwd,$hash)){ /* ok */ }

Q46. MDS VS
PASSWORD_HASH.

« mdS5 fast/insecure; password_hash salted
bcrypt/argon?2.

Q47. LARGE UPLOAD
LIMITS.

» php.ini: upload_max_filesize, post_max_size; check size
in code.

Q48. == VS ===
EXAMPLE.

« var_dump(0=="'0'); // true
var_dump(0==='0'); // false

Q49. MVC MEANING.

« Model: data; View: Ul; Controller: request handling.

Q50. NAMESPACES
EXAMPLE.

« namespace App; class A{}; \App\A;

QS51. PREPA
STATEMENTS—W

* Prevent SQLi; faster for repeated execs.

Q562. PAGINATION WITH
LIMIT/OFFSET.

« $limit=10;$0ff=($p-1)*$limit; SELECT ... LIMIT 2 OFFSET 2

Q53. SEND EMAIL
(BASIC).

« mail('to@x.com’,'Subj’,'Msg','From: me@x.com’);

Q4. AUTO

_LOA

REQ

BAA

UIRE.

« Autoload loads classes on demand; require is manudl

Include.

Qb55. SIMPLE LOGIN
FLOW.

« Fetch by email; verify password; set $_SESSION['vid'].

Q56. JWT BASICS.

« Header.Payload.Signature; stateless auth token.

QS7. FORCE FI
DOWNLOA

« header('Content-Type: app/pdf'); header('Content-
Disposition: attachment; filename=a.pdf');
readfile('a.pdf');

QS58. CSRF &
PREVENTION.

« Use CSRF tokens; SameSite cookies; verify on POST.

Q569. PREVENT SQL
INJECTION.

« Always use prepared statements + input validation.

Q60. ARRAY_MERGE VS +
OPERATOR.

« merge reindexes; + keeps left keys, ignores dup keys.

Q61. PROPER LOGOL
REDIRECT.

 session_destroy(); header('Location: login.php’);

Q62. XSS & PREVENTION.

« Escape output: htimispecialchars($s,ENT_QUOTES, ' UTF-
8'); CSP.

Q63. MULTIPLE FI
UPLOAD.

« loop over $_FILES['f'][tmp_name'] and move each.

Q64. COMPOSER BASICS.

e composer init; composer require vendor/pkg; require
'vendor/autoload.php’;

Q65. PSR STANDARDS
QUICK.

« PSR-1/12 coding; PSR-4 autoload; PSR-7 HTTP messages.

Q66. MVC FRAMEWORKS
NAMES.

« Laravel, Symfony, Codelgniter, Yii, Slim (micro).

Q6/. PHP ERROR LEVELS.

« E NOTICE, E WARNING, E_ERROR;
error_reporting(E_ALL);

Q68. UNLINK VS UNSET.

* unlink deletes file; unset removes variable/array key.

Q69. TRAIT USAGE.

. frait Log{function log($m){echo $m;}} class A{ use Log; }

Q70. ABSTRACT VS
INTERFACE.

« Abstract: some impl; Interface: method signatures
(PHP8: defaults ok).

Q/1. BASIC CURL GET.

« $ch=curl_init('https://api.example.com’);
curl_setopt($ch,CURLOPT_RETURNTRANSFER,true);
$r=curl_exec($ch); curl_close($ch);

Q/2.
PUBLIC/PROTECTED/PRIVAT
E.

« public everywhere; protected class+children; private
class only.

Q/73. EXCEPTION
CHAINING.

« throw new Exception('Outer',0,new Exception('Inner'));

Q74. CRON JOB IDEA.

« Use O§ cron to run php script periodically (e.g., */5** *
* php job.php).

Q75. JSON APl HANDLER.

« $data=json_decode(file_get_contents('php://input’),ru
e); echo json_encode(['ok'=>true,'data'=>%$data]);

Q76. WHAT IS CACHING?

« Store frequent data to speed up (OPcache, Redis,
Memcached).

Q77. ENABLE OPCACHE.

* php.ini: opcache.enable=1;
opcache.memory_consumption=128

Q78. SESSION VS JWT
AUTH.

« Session: server state; JWT: self-contained token (scales).

Q/79. SECURE REST API
TIPS.

« HTTPS, JWT/OAuUth2, rate limit, validate input, sanitize
outpuT.

Q80. FILE-BASED
CACHING SNIPPET.

« if(fresh($f)) readfile($f); else { olbo_start(); /*render*/

$h=0ob_get_clean(); file_put_contents($f,$n);}

Q81. .HTACCESS
PURPOSE.

« Apache per-dir config: rewrites, redirects, deny/allow,

eIrors.

Q82. REWRITE PRETTY URL.

« RewriteEngine On
RewriteRule Npost/([0-2]+)$ post.php2id=$1 [L]

Q83. DEPENDENCY
INJECTION IDEA.

« Give dependencies from outside; improves testability.

Q84. AJAX WITH PHP.

« JS fetch('data.php’).then(r=>r.text()); PHP: echo 'Hi’;

Q85. PSR-/ MEANING.

« Standard interfaces for HTTP req/resp objects.

Q86. SESSIONS ACROSS
SUBDOMAINS.

« session_set_cookie_params(['domain'=>".example.com’
]); session_start();

Q87. GARBAGE
COLLECTION.

« Cyclic GC clears ref cycles; gc_enable(),
gc_collect_cycles|).

Q838. RBAC QUICK
CHECK.

« if($_SESSIONJ'role']!=="admin') die('Forbidden’);

Q8%. COMMON DESIGN
PATTERNS.

 Singleton, Factory, Strategy, Observer, MVC.

Q0. SINGLETON
SAMPLE.

« class DB{private static $i; private function
__construct(){} public static function get(){return
self::$iee=new DB();}}

Q9 1. CREATE IMAGE
THUMBNAIL (GD).

« $img=imagecreatefromjpeg('big.jpg');
$t=imagescale($img,150,150);
imagejpeg($t,' thumb.jpg');

Q92. JSON WITH STAT
CODE.

« http_response_code(201); header('Content-Type:

app/json'); echo json_encode(['created'=>true]);

Q93. REST VS SOAP.

 REST: JSON, stateless; SOAP: XML, strict, WS-*.

Q94. CONSUME REST IN
PHP.

« $res=file_get_contents('https://api.github.com’); // or
cURL

Q95. WHAT IS PHPUNIT?

« Unit tfesting framework for PHP.

Q96. PHPUNIT TEST
EXAMPLE.

 class T extends PHPUnit\Framework\TestCase{function
testX(){ $this->assertEquals(4,2+2); }}

Q9/. ENV VARS WITH
DOTENV.

« $dotenv=Dotenv\Dotenv:.createlmmutable(__DIR_);

$dotenv->load(); $_ENV['DB_USER'];

Q98. STATIC VS SELF.

e self:: binds to current class; static:: late static binding
(subclass).

Q99. SECURE
DEPLOYMENT TIPS.

» Disable display_errors, HTTPS, least-priv DB user, WAF,
monitor.

Q100. PHP 8+ KEY
~EATURES.

« Union types, nullsafe ¢->, named args, attributes, JIT,
martch.

