
PHP: 100 PYQS WITH
ANSWERS (FULL)
Each slide = 1 Question + Answer/Code
Q1 – Q100

Q1. DIFFERENCE BETWEEN
ECHO AND PRINT?

• echo: faster, multiple args.
print: returns 1, single arg.

Q2. WHAT DOES
VAR_DUMP() DO?

• Prints type + value details of variables.

Q3. HOW TO DEFINE/USE
CONSTANTS?

• define('PI',3.14);
const PI = 3.14;

Q4. == VS ===?

• == value only; === value + type (strict).

Q5. FUNCTION WITH
DEFAULT ARG + RETURN

TYPE?
• function add(int $a,int $b=0): int { return $a+$b; }

Q6. LIST PHP SCALAR +
SPECIAL TYPES.

• int, float, string, bool, array, object, resource, null.

Q7. START SESSION &
STORE DATA.

• session_start(); $_SESSION['user']='Ali';

Q8. COOKIES VS
SESSIONS?

• Cookie: client-side; Session: server-side.

Q9. FOREACH EXAMPLE.

• foreach($arr as $k=>$v){ echo "$k:$v\n"; }

Q10. MYSQLI CONNECT
(PROCEDURAL).

• $c=mysqli_connect('localhost','root','','test');

Q11. INDEXED VS
ASSOCIATIVE ARRAYS?

• Indexed: numeric keys; Associative: string keys.

Q12. ARRAY_MERGE
USAGE.

• $c=array_merge($a,$b);

Q13. COUNT ARRAY
ELEMENTS.

• count($arr);

Q14. MULTIDIMENSIONAL
ARRAY EXAMPLE.

• $a=[[1,2],[3,4]];

Q15. ITERATE WITH
KEY/VALUE.

• foreach($a as $k=>$v){ /*...*/ }

Q16. COMMON STRING
FUNCS.

• strlen, strtolower, strtoupper, strpos, substr.

Q17. SUBSTR EXAMPLE.

• substr('abcdef',1,3) // 'bcd'

Q18. EXPLODE VS
IMPLODE.

• explode: string→array; implode: array→string.

Q19. TRIM USAGE.

• trim(' hi ') // 'hi'

Q20. STRING
INTERPOLATION.

• $name='Ali'; echo "Hello $name";

Q21. $_GET VS $_POST.

• GET in URL; POST in body; POST safer for forms.

Q22. $_REQUEST
MEANING.

• Union of GET+POST+COOKIE (avoid in strict apps).

Q23. BASIC FILE UPLOAD.

• move_uploaded_file($_FILES['f']['tmp_name'],'uploads/a
.txt');

Q24. FILE READ/WRITE
QUICK.

• file_put_contents('a.txt','hi'); echo
file_get_contents('a.txt');

Q25. INCLUDE VS
REQUIRE.

• include: warning on miss; require: fatal on miss.

Q26. READ FILE LINE BY
LINE.

• while(($l=fgets($fp))!==false){ echo $l; }

Q27. APPEND TO FILE.

• file_put_contents('log.txt','New\n',FILE_APPEND);

Q28. OUTPUT BUFFERING.

• ob_start(); echo 'Hi'; $s=ob_get_clean();

Q29. SAFE UPLOAD
STEPS.

• Check error, size, MIME, ext; use move_uploaded_file.

Q30. FILE_EXISTS USAGE.

• if(file_exists('config.php')) require 'config.php';

Q31. JSON ENCODE.

• echo json_encode(['a'=>1]);

Q32. JSON DECODE
ASSOC.

• $arr=json_decode($json,true);

Q33. REDIRECT HEADER.

• header('Location: login.php'); exit;

Q34. GET VS POST
ADVANTAGES.

• GET: bookmarkable; POST: larger+safer for sensitive
data.

Q35. MYSQLI SELECT +
FETCH.

• $r=mysqli_query($c,'SELECT * FROM t');
while($row=mysqli_fetch_assoc($r)){}

Q36. MYSQLI VS PDO?

• MySQLi: MySQL-only; PDO: multi-DB, nicer prepared
statements.

Q37. PDO CONNECT +
ERRMODE.

• $pdo=new
PDO('mysql:host=localhost;dbname=x','u','p',[PDO::ATTR
_ERRMODE=>PDO::ERRMODE_EXCEPTION]);

Q38. PDO PREPARED
SELECT.

• $st=$pdo->prepare('SELECT * FROM u WHERE email=?');
$st->execute([$e]);

Q39. PDO UPDATE
PREPARED.

• $st=$pdo->prepare('UPDATE u SET n=? WHERE id=?');
$st->execute([$n,$id]);

Q40. TRY/CATCH
EXAMPLE.

• try{ /*...*/ }catch(Exception $e){ echo $e-
>getMessage(); }

Q41. ISSET VS EMPTY.

• isset: set & not null; empty: false for '',0,null,[], not set.

Q42. REQUIRE_ONCE VS
INCLUDE_ONCE.

• Both avoid duplicate load; require_once fatal on
failure.

Q43. DESTROY SESSION
(LOGOUT).

• session_start(); session_unset(); session_destroy();

Q44. PASSWORD_HASH
USAGE.

• $h=password_hash($pwd,PASSWORD_DEFAULT);

Q45. PASSWORD_VERIFY
USAGE.

• if(password_verify($pwd,$hash)){ /* ok */ }

Q46. MD5 VS
PASSWORD_HASH.

• md5 fast/insecure; password_hash salted
bcrypt/argon2.

Q47. LARGE UPLOAD
LIMITS.

• php.ini: upload_max_filesize, post_max_size; check size
in code.

Q48. == VS ===
EXAMPLE.

• var_dump(0=='0'); // true
var_dump(0==='0'); // false

Q49. MVC MEANING.

• Model: data; View: UI; Controller: request handling.

Q50. NAMESPACES
EXAMPLE.

• namespace App; class A{}; \App\A;

Q51. PREPARED
STATEMENTS—WHY?

• Prevent SQLi; faster for repeated execs.

Q52. PAGINATION WITH
LIMIT/OFFSET.

• $limit=10;$off=($p-1)*$limit; SELECT ... LIMIT ? OFFSET ?

Q53. SEND EMAIL
(BASIC).

• mail('to@x.com','Subj','Msg','From: me@x.com');

Q54. AUTOLOAD VS
REQUIRE.

• Autoload loads classes on demand; require is manual
include.

Q55. SIMPLE LOGIN
FLOW.

• Fetch by email; verify password; set $_SESSION['uid'].

Q56. JWT BASICS.

• Header.Payload.Signature; stateless auth token.

Q57. FORCE FILE
DOWNLOAD.

• header('Content-Type: app/pdf'); header('Content-
Disposition: attachment; filename=a.pdf');
readfile('a.pdf');

Q58. CSRF &
PREVENTION.

• Use CSRF tokens; SameSite cookies; verify on POST.

Q59. PREVENT SQL
INJECTION.

• Always use prepared statements + input validation.

Q60. ARRAY_MERGE VS +
OPERATOR.

• merge reindexes; + keeps left keys, ignores dup keys.

Q61. PROPER LOGOUT
REDIRECT.

• session_destroy(); header('Location: login.php');

Q62. XSS & PREVENTION.

• Escape output: htmlspecialchars($s,ENT_QUOTES,'UTF-
8'); CSP.

Q63. MULTIPLE FILE
UPLOAD.

• loop over $_FILES['f']['tmp_name'] and move each.

Q64. COMPOSER BASICS.

• composer init; composer require vendor/pkg; require
'vendor/autoload.php';

Q65. PSR STANDARDS
QUICK.

• PSR-1/12 coding; PSR-4 autoload; PSR-7 HTTP messages.

Q66. MVC FRAMEWORKS
NAMES.

• Laravel, Symfony, CodeIgniter, Yii, Slim (micro).

Q67. PHP ERROR LEVELS.

• E_NOTICE, E_WARNING, E_ERROR;
error_reporting(E_ALL);

Q68. UNLINK VS UNSET.

• unlink deletes file; unset removes variable/array key.

Q69. TRAIT USAGE.

• trait Log{function log($m){echo $m;}} class A{ use Log; }

Q70. ABSTRACT VS
INTERFACE.

• Abstract: some impl; Interface: method signatures
(PHP8: defaults ok).

Q71. BASIC CURL GET.

• $ch=curl_init('https://api.example.com');
curl_setopt($ch,CURLOPT_RETURNTRANSFER,true);
$r=curl_exec($ch); curl_close($ch);

Q72.
PUBLIC/PROTECTED/PRIVAT

E.
• public everywhere; protected class+children; private

class only.

Q73. EXCEPTION
CHAINING.

• throw new Exception('Outer',0,new Exception('Inner'));

Q74. CRON JOB IDEA.

• Use OS cron to run php script periodically (e.g., */5 * * *
* php job.php).

Q75. JSON API HANDLER.

• $data=json_decode(file_get_contents('php://input'),tru
e); echo json_encode(['ok'=>true,'data'=>$data]);

Q76. WHAT IS CACHING?

• Store frequent data to speed up (OPcache, Redis,
Memcached).

Q77. ENABLE OPCACHE.

• php.ini: opcache.enable=1;
opcache.memory_consumption=128

Q78. SESSION VS JWT
AUTH.

• Session: server state; JWT: self-contained token (scales).

Q79. SECURE REST API
TIPS.

• HTTPS, JWT/OAuth2, rate limit, validate input, sanitize
output.

Q80. FILE-BASED
CACHING SNIPPET.

• if(fresh($f)) readfile($f); else { ob_start(); /*render*/
$h=ob_get_clean(); file_put_contents($f,$h);}

Q81. .HTACCESS
PURPOSE.

• Apache per-dir config: rewrites, redirects, deny/allow,
errors.

Q82. REWRITE PRETTY URL.

• RewriteEngine On
RewriteRule ^post/([0-9]+)$ post.php?id=$1 [L]

Q83. DEPENDENCY
INJECTION IDEA.

• Give dependencies from outside; improves testability.

Q84. AJAX WITH PHP.

• JS fetch('data.php').then(r=>r.text()); PHP: echo 'Hi';

Q85. PSR-7 MEANING.

• Standard interfaces for HTTP req/resp objects.

Q86. SESSIONS ACROSS
SUBDOMAINS.

• session_set_cookie_params(['domain'=>'.example.com'
]); session_start();

Q87. GARBAGE
COLLECTION.

• Cyclic GC clears ref cycles; gc_enable(),
gc_collect_cycles().

Q88. RBAC QUICK
CHECK.

• if($_SESSION['role']!=='admin') die('Forbidden');

Q89. COMMON DESIGN
PATTERNS.

• Singleton, Factory, Strategy, Observer, MVC.

Q90. SINGLETON
SAMPLE.

• class DB{private static $i; private function
__construct(){} public static function get(){return
self::$i??=new DB();}}

Q91. CREATE IMAGE
THUMBNAIL (GD).

• $img=imagecreatefromjpeg('big.jpg');
$t=imagescale($img,150,150);
imagejpeg($t,'thumb.jpg');

Q92. JSON WITH STATUS
CODE.

• http_response_code(201); header('Content-Type:
app/json'); echo json_encode(['created'=>true]);

Q93. REST VS SOAP.

• REST: JSON, stateless; SOAP: XML, strict, WS-*.

Q94. CONSUME REST IN
PHP.

• $res=file_get_contents('https://api.github.com'); // or
cURL

Q95. WHAT IS PHPUNIT?

• Unit testing framework for PHP.

Q96. PHPUNIT TEST
EXAMPLE.

• class T extends PHPUnit\Framework\TestCase{function
testX(){ $this->assertEquals(4,2+2); }}

Q97. ENV VARS WITH
DOTENV.

• $dotenv=Dotenv\Dotenv::createImmutable(__DIR__);
$dotenv->load(); $_ENV['DB_USER'];

Q98. STATIC VS SELF.

• self:: binds to current class; static:: late static binding
(subclass).

Q99. SECURE
DEPLOYMENT TIPS.

• Disable display_errors, HTTPS, least-priv DB user, WAF,
monitor.

Q100. PHP 8+ KEY
FEATURES.

• Union types, nullsafe ?->, named args, attributes, JIT,
match.

